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S T E A D Y  O S C I L L A T I O N S  O F  A P L A N E  P R O F I L E  N E A R  T H E  

I N T E R F A C E  O F  M E D I A  W I T H  A F L A T  B O T T O M  

S. I. Filippov UDC 532.5 

We study in the framework of small-amplitude wave theory the steady oscillations of a profile in a two-layer ideal 

incompressible ponderable fluid flow that is bounded by a fiat bottom. Even in the linear formulation, the solution of this 

problem causes great difficulties, associated in considerable measure with satisfaction of the boundary condition on the profile 
contour. Among the methods for solving the problems of the oscillations of bodies in a fluid with media interfaces, we note 
the Kochin method [1], based on the distribution of the singularities around the contour. Khaskind [2], using the approach of 

[1], examined the problem of the oscillations of a profile beneath the free surface of a liquid of finite depth. Approximate 

expressions were obtained in [2] for the forces acting on the profile with use of the Kochin hypothesis. The numerical methods 

have recently been widely used to solve the oscillation problems. The motions of bodies in flows with a single interface were 

studied in [3, 4] using a hybrid finite-element method. 

In the present work we develop the numerical-analytical method for modeling boundaries with singularities [5-7], 

proposed by Tumashev. One of the primary advantages of the method lies in the satisfaction of the boundary condkion on the 
profile in the course of the construction of the solution. This method was used previously in [7] for flows with two interfaces 
in studying the translational motion of a wing profile. 

I .  Statement of the Problem. We examine the wave motions that arise in a ponderable fluid in the case of periodic 
oscillations of a plane profile beneath the line of separation of fluids of different density with the presence of a flat bottom. 
We shall assume that the waves that form on the line of separation propagate in both directions from the body. 

Let xOy be the stationary coordinate system. The x axis is horizontal and coincides with the undisturbed level of the 

line of separation, and the y axis is directed upward. By virtue of the linearity of the problem, it is sufficient to examine 
harmonic oscillations of the profile C satisfying the law 

u,.(s,  t) = u l ( s )  coswt + u2(s) sinwt. 

Here Un(S, t) is the normal component of the velocity of the profile point with the arcwise abscissa s; t is the time. 

Considering the oscillations to be steady, we can write the complex velocity potential in the form 

w ( z , t )  = w l ( z ) c o s w t  + w2(z)s in~: l  (z  = x + iy) .  

Since the amplitudes of the oscillations are small, the flow tangency condition 

0~k 
=uk(s )  ( u ' k ( z ) = ~ ( z , y ) + i ~ b k ( z , y ~ )  ( k =  1,2) (1.1) 

On 

applies to the contour C, assumed to be stationary. 

The boundary conditions on the line of separation and the bottom line for the functions Wk(Z) take the form 

Irn [dw+(z ) /dz  + i ( m + w + ( z )  _ m - w - i ( z ) ) l  = 0, y = o; 

Im [ ~ + ( z )  - ~ - ( z ) ]  = 0,  y = 0; 

(1.2) 

(1.3) 

Imwk(z) = ~bo, y = - 1 t  (r = const), (1.4) 
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where m + = p+6o2/g(o + --  p - ) ;  m -  = p-o~2/g(p + - -  p - ) ;  g is the gravity force acceleration; the plus symbol denotes the 
quantities relating to the fluid surrounding the body, the minus symbol relates to the region y >_ 0. 

2. Derivation of  the Integral  Equations.  It is easy to establish that the functlon ~k (x, y) is single-valued in the region 
+ 

outside the contour E(C) [2], consequently w k (z) when circling the contour C can change only by the imaginary cyclic constant 

iAk, where A k = +Uk(S)ds. We shall first assume that A k = 0. 
C 

We shall seek the solution of the posed problem in the form 

wk = w~(z) + w~(z) + v~(z) + fJk(z) + Ok(z) + ~k(z). (2.1) 

Here w~ are known functions, representing the solution of the problem for an unbounded flow; wk(z) = 0 for A k = 0; 

1 } #k(r) clr; 
~(~) = ~ �9 - 1 } #~(r,)dn . 

- - 0 0  

By ~k(rl) we shall mean Ok(rl - -  ill). We shall consider that the real functions/~k(r), ~k(rl) are such that the integrals vk(z) 
and ~k(Z) converge. The functions F(z, r), f:(z, r l )  are constructed on the basis of  the Milne-Thompson circle theorem with 
the use of  conformal mapping of  the exterior of  the contour onto the exterior of  a circle [6, 7] so that wk(z) in the form (2.1) 

satisfies the condition (1.1). Moreover, on the basis of the properties of  the limiting values of  the Cauchy-type integral, the 
condition (1.3) is satisfied. 

Substituting (2.1) into the condition (1.2), we obtain 

,r av~ 
Im t-~z + iuvk + ( d  + ia) [f~k(z)l} = y = O, 

o m+ m+ where f~k(Z) = Wk(Z) + ~k(Z) + l,k(Z) + ~k(Z); o = - -  m - ;  v = + m - .  This relation is equivalent to the following: 

,f dvk Imt--~-z + i~ 'vk- (  d / o ) [ ~ k ( z ) ] } = 0 ,  y = 0 .  
dz 

~ 0  
Since the functions Vk(Z), Wk(Z), rr k(Z) ' ~'k(Z) ' ~-k(Z) are regular in the lower halfplane, then we have for the given region 

dvk d 
e-T + ivvk - (~z -icr) [~k(z)] = Bk (2.2) 

(B k are real constants). Without loss of generality, we set B k = 0. Consequently, from (5) we can find 

/ vk(z) = -m,-~k(z)+e-/~" [ - ~  + 2m2 ei~Zd~d-~U)du 1. (2.3) 
OO 

Here C k are unknown constants; m 1 = (o + - -  o - ) / (0  + + o - ) ;  m2 = o+-/(o + + o - ) .  
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Performing in (2.3) the limit passage with z = z 1 - -  iH on the basis of  the Sokhotskii formula and examining the real 

part of  the equality, we obtain the linear integral equation 

I~k(x) = Re (Cke -i'~:) 4- qk(x)4- 

/ / + Kl  (z,  r)~k(r) dr + K4(z,  rl)[~k(rl) dr1, 

]dw?(u) , eu], qk(z) = 2Re [ -  mlw~(z)  + 2rn2e i ~  ~ e -  "~ 

(2.4) 

K , ( z , r )  l lm [ m l F ( x , v ) +  2 f F : ( u ,  du], = -- -- 2 m  e ivz r ) e  - ivu 
71" 

o o  

K 4 ( x , r l ) =  I m { z _ r 1 4 - i  H 

u - r I + i l l )  2 + Fu(U ' r l )  e - i ~ d u  " 
o o  

Performing the coordinate transformation z = z I - -  iH and substituting (2.1) into the condition (1.4), we find 

~k(xl) = -2Re[w~(z l ) ] ,  /(2(.T1, TI) = l l m F ( z l , r l ) ,  
7t" 

K3(xl r ) = l l m [ x l  1_ + F ( z l , r ) ]  
' - r - i H  " 

(2.5) 

We introduce the notations 

d o #k( . )  = ~[wk(~) + w;(~) + ek(~) + ~k(~) + ~k(~))e -~v~ d~, 
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then it is not difficult to obtain from the radiation condition similarly to [6] 

C~ = -2rn~[H~(v)  - iH2(v)], C2 = iC~. 

We shall examine the systems 

/ i /~t-o(z) = q~(x) + K l ( z ,  r)#~o(r)  dr + K4(z ,  rt)fiko(rl) drt ,  

~ 0 0  ~ 0 0  

7 
where k = 0, I ,  2; qo(x) = exp(ivx); ~ ( x l )  = 0. 

We can write the solution of the system (2.4), (2.5) in terms of the solutions of  the systems (2.7): 

/tk(x) =/Jko(x) + Re [Ck/aoo(x)], 

p~(z~) = a ~ ( z l )  + Re [Ck~(z~) ] .  

Considering the relations (2.8) and the fact that C 2 = iC 1, we find 

/~1(;r) "~- i~2(gg) = ~ 1 0 ( z )  "~ i/t20(2~) + C l t / O o ( z ) ,  

then 

H i ( v )  + iH2(v)  = Hlo(v)  + iH2o(v) + Cl(A#oo + A/~oo). 

Here 

oo 
o Hko(v)  = -~z[wk(z) + w'k(z)]e - iez dx + A#ko(v) + Afiko(v): 

~ O 0  

/ / 1 e -i~z F~x(z, r)/zko(r) drdz;  A~ko(v) = - 2~r---i 

r., _1 l A/2ko(v) = -2r--~ x -  rl + i t I )  2 + ff~x(z' rl)  f i~o(rl)drldz.  

(2.6) 

(2.7) 

(2.8) 

(2.9) 

Substituting the expression that is conjugate to (2.9) into (2.6), we obtain 

m 
C1 = -2m2[Hlo(v )  - iH2o(v)] 

1 + 2m2(A---Foo + ~--~oo) 

In the case A k ;~ 0 we represent Wk(Z) by the multivalued in E(C) function 

w.k+(z ) = a~ ak(z)  - A ~ l n a k ( z ) ( z  - 5k) ( Imzk > 0), 

without violating the conditions (1.1), (1.3). The function ak(z) ~ 0 is regular in E(C) and in the vicinity z = o0 expands into 

the series 

ak(z)  = z + aok + al--A + . . .  
Z 
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In the derivation of  equations (2.4), (2.5) the presence of the function wk(z) ;~ 0 in the sum (2.1) leads to the appearance of 

additional terms in qk and fit: 

X 

q~(z) = ~ , In ak--~- ~ t2m2ak--~--~ + u_2k]e-i"~d"},  
OO 

= -2rt  

We note that in the derivation of equation (2.4) the term with ln(z - -  zk) is not subjected to the conjugation operation. 

3. Calculation Examples. We shall assume that the oscillating body is an elliptical cylinder x2/a 2 + (y + h)2/b 2 = 

1, where a and b are, respectively, the semi-major and semi-minor axes of the ellipse, h is the distance of  the center of  the 

ellipse from the interface. 

The function F(z, r) for the elliptical cylinder has the form 

= 

~2(r)[f(z) - 1 /~ ( r ) ] - '  (3.1) 
= - r  - - 

' 

( =  z + i h + x / ( z + i h )  "2-e 2 e 2=a 2 - b  2. (3.2) 
a+b 

The function f:(z, rl)  is written similarly to (3.1) with account for the replacement of z by r 1 - -  ill. Since there are 
0 

no deformations, then A k = 0, and it is not difficult to construct Wk(Z ) [8], using the mapping (3.2). 

The basic hydrodynamic characteristics of the oscillating profile include the added mass coefficients 

Aij = -p+ f OSage.On : ds, 
c 

where ~i(x, y) (i = "l'~,J) are the potentials for motion along the x and y axes and for rotation, which are defined by the 

potentials ~l(x, y), ~,z(x, y). 

From the formula 

1 /" _ ~9~p-(x, 0, t) p+Oqo+(z,O,t)) 
o ( x , t )  = - a ( p +  _ p _ l  p s t  

we can determine the shape of the fluid interface. 
An algorithm and a program in the Fortran language were developed for the solution of the systems of integral 

equations and the calculation of the hydrodynamic characteristics. Figures 1-4 show examples of the calculations._ 

Figure 1 shows the calculated values of  the nonzero added mass coefficients kll  = Xll/Trp+b2, k22 = Xll (b = 1 is 
the radius of  the circle) of a circular cylinder in a two-layer infinitely deep liquid (curve 1 is for p = p-/o + = 0.97, and curve 

2 is for ~ = 0) at the distance h = h/b = 2 from the interface as a function of the quantity vb. We note that the calculations 

for the free surface agree well with the analytic results [3], indicated by the crosses. The calculations of the nonzero added mass 

coefficients of an elliptical cylinder a/b = 2 with h/b = 2, H = oo for ~ = 0.97 and 0 are shown in Figs. 2 and 3, where 

~ij = Xij/Trp+bn" For ;kll , ;k22 n = 2, f o r  ~31 n = 3, f o r  ~33 n = 4. 
In Fig. 4 the solid lines represent examples of the calculation of the interface of  the fluids ~ = 0.97) with h/b = 3, 

H/b = 4.5, vb = 0.6 for the horizontal-vertical oscillations of an elliptical cylinder a/b = 2 in accordance with the law x 0 = 

- h  + e sin wt for t" = too = ~r(n - -  1)/2 (n = T-,-,~), the dashed curves are the result for an infinitely deep liquid. We note 

that the influence of the bottom shows up in increase of the amplitude of the waves on one side of  the profile and reduction 

of their amplitude on the other side of the profile. 
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In conclusion we emphasize the promising nature of the method of modeling the boundaries using the singularities for 
the solution of the problems of ship hydrodynamics, in which the translational motion of the body and its oscillations are taken 
into account. 

REFERENCES 

. 

2. 

3. 

4. 

5. 

~ 

7. 

8. 

N. E. Kochin, "The plane problem of steady oscillations of bodies beneath the free surface of an incompressible 
liquid," Collected Works, Vol. 2, Izd-vo Akad. Nauk SSSR, Moscow-Leningrad (1949). 
M. D. Khaskind, "The plane problem of the oscillations of a body beneath the surface of a liquid of finite depth," 

PMM, 8, No. 4 (1944). 

R. Eatock Taylor and C. S. Hu, "Multipole expansions for wave diffraction and radiation in deep water," Ocean Eng., 

18, No. 3 (1991). 
I. V. Sturova, "Influence of regular waves on a submerged body traveling in a stratified fluid," in: Computational 

Technologies [in Russian], 1, No. 3, Novosibirsk (1992). 
G. G. Turnashev, N. D. Cherepenin, and M. V. Lotfullin, "A method for solving the problems of the motion of a 
system of profiles near a fluid interface," in Mechanics of Continua: Proceed. of Repub. Scientific-Engineering 

Conference [in Russian], Naberezhnye Chelny (1982). 
N. D. Cherepenin, "On the oscillations of a profile near the interface of two fluids," Proceed. of Seminar on Boundary 

Problems [in Russian], No. 11, Kazan (1974). 
M. V. Lotfullin and S. I. Filippov, "Modeling of interfaces in the problems of ponderable fluid flow around a wing 

profile," PMTF, No. 4 (1992). 
L. I. Sedov, Plane Problems of Hydrodynamics and Aerodynamics [in Russian], Gostekhteoretizdat (1950). 

188 


